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By using the map y = L cot(/) where L is a constant, differential equations on the interval 
.r E [ - (s, m] can be transformed into I E [0, K] and solved by an ordinary Fourier series. In 
this article, earlier work by Grosch and Orszag (J. Compur. Phy.s. 25, 273 (1977)). Cain, Fer- 
ziger, and Reynolds (.I. Compur. Phys. 56, 272 (1984)), and Boyd (J. Compul. Phys. 25, 43 

(1982); 57, 454 (1985); SIAM J. Numer. Anal. (1987)) is extended in several ways, First, the 
series of orthogonal rational functions converge on the exterior of bipolar coordinate surfaces 
in the complex y-plane. Second, Galerkin’s method will convert differential equations with 
polynomial or rational coefficients into banded matrix problems. Third, with orthogonal 
rational functions it is possible to obtain exponential convergence even for u(v) that 
asymptote to a constant although this behavior would wreck alternatives such as Hermite or 
sine expansions. Fourth, boundary conditions are usually “natural” rather than “essential” in 
the sense that the singularities of the differential equation will force the numerical solution to 
have the correct behavior at infinity even if no constraints are imposed on the basis functions. 
Fifth, mapping a finite interval to an infinite one and then applying the rational Chebyshev 
functions gives an exponentially convergent method for functions with bounded endpoint 
singularities. These concepts are illustrated by five numerical examples. ( 19X7 Academic Press. 

Inc. 

1. INTRODUCTION 

Grosch and Orszag [l] showed that differential equations on a semi-infinite 
interval can be solved very effectively by mapping the interval into [ - 1, 1 ] using 
an algebraic function for the map and then expanding the unknown as a series of 
Chebyshev polynomials. Boyd [2] generalized their technique by giving a map 
appropriate for y E [ - cc, co] and using the method of steepest descent to derive 
simple, explicit criteria for choosing the optimum value of the map parameter L. 
One interesting conclusion was that L is not merely a function of the singularities 
and asymptotic behavior (as 1 y 1 --f co ) of the solution u(y), but also depends upon 
N, the number of Chebyshev polynomials retained in the truncated series for u(y): 
the L which is best for N = 10 may be much smaller than the best choice for N = 40. 
Cain, Ferziger, and Reynolds [lo] independently devised the same mapping for 
YEC--,ml. 
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TABLE I 

The Mapped Chebyshev Polynomials: TB,(,v) [L = I ] 

II 

[Symmetric about J = 0] 

0 
2 
4 
6 
8 

IO 

[Antisymmetric about I’= 0] 

TB,,( ~1 

I 
(J,‘- I):(>,‘+ 1) 

( 1,’ - 6,,’ + I ); ( j.: + I )z 
(1.0 - IS!’ + I5V - I ),‘(F + I )’ 

( yx - 2XJ.h + 7oI.4 - 28.r‘ + I ) ‘( \,J + 1 )I 
(),‘I) ~45~~“+2lo~~~-210~~+45~~‘~ I),(!‘+ I)’ 

I 1..J 1.2 + I )’ 2 
3 .r( J.1 - 3 ), ( f + I ) 1 2 
5 ~~()~~-lql~~fS) (?+I)‘2 
7 A’( P ~ 2lj.d + 35.V’ - 7).( 1.2 + I )’ 2 
9 ,I.( A.’ i 36~” + 126.1,” - 84~’ + 9)/( 1.2 + I )’ 2 

The earlier articles, however, left much undone. Grosch and Orszag [l] gave 
only numerical examples with almost no theory; Boyd [2] is all theory and does 
not actually solve any differential equations (although this is remedied for one 
unusual class of problem in Boyd [4]). In this new report, we improve both 
the algorithms and the theoretical foundations for spectral methods on an infinite 
interval. 

The orthogonal rational functions, Table I, we employ as a basis set are merely 
mapped Chebyshev polynomials, which in turn are but the transformed cosines of a 
Fourier series. Throughout this work, we shall employ the convention that 
J‘ E [ - #z, x ] is the original, unmapped coordinate, x E [ - 1, I ] is the argument of 
the Chebyshev polynomials, and t (for trigonometric!) is the argument of the cosine 
functions where t E [0, rc]. Then with the maps 

J’= Lx/( 1 -Y’) 2 (1.1) 

= L cot(t), (1.2) 

x = cos(t), (1.3) 

where L is a constant, our basis functions, which we denote by TB,,(y) as in [4], 
can be given the equivalent representations 

TB,,(y) = T,,(x) = T,,[y/(L2 +y2)’ q, n=o, 1, 2, (1.4) 

f cos(nt) = cos[n arccot(y/L)], (1.5) 

where the T,,(x) are the usual Chebyshev polynomials [S].’ The new basis fuctions 
’ Note that one must use a nonstandard branch of the arcot(l)--by adding K to the result of the com- 

piler’s arccot for ~‘<Gto avoid a discontinuity in the inverse map from y to I at j’=O. 
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Tf?,,( y) are rational functions of y for n even and are rational functions divided by a 
square root for the functions antisymmetric about y = 0, which have n odd. In a 
mild abuse of terminology, we will call the TB,(y) the “rational Chebyshev 
functions” as in 133 even though, strictly speaking, they are rational only for even 
degree. They satisfy the orthogonality relation (for L = 1 ), 

7712, m=n>O 

I 
7 W?,(Y) T&,(Y) & = 7t 

(I +J’*) . 

r 

’ 
m=n=O (1.6) 

* 
0, m # n. 

However, blindly applying Galerkin’s method using (1.6) is usually inefficient. 
The mappings (1.1) offer both the opportunity of simplying the programming and 
also of understanding the special problems posed by differential equations on an 
infinite interval. 

Section 2 discusses the transformations in the complex plane: the strip of con- 
vergence for a Fourier series in becomes the exterior of a hip&r coordinate surface 
in the complex y-plane! The topic of Section 3 is the mechanics of using the TB,(.v): 
it is usually simplest to convert the problem to the trigonometric coordinate t and 
then apply Fourier methods. Section 4 exploits this “trigonometric” methodology to 
show that spectral methods often lead to sparse, banded matrices when the rational 
Chebyshev functions are the basis set. Section 5 analyzes functions u(y) that decay 
algebraidly or asymptote to a constant as 1 )‘I + x : exponentially convergent 
series are still possible provided the Fourier series in t is properly matched to the 
asymptotic behavior of the function. Section 6 illuminates the distinction between 
“natural” and “essential” boundary conditions; in contrast to Chebyshev methods 
on a finite interval where the boundary conditions usually must be imposed 
explicitly on the numerical solution, the boundary conditions can often be ignored 
when the domain of integration is infinite. Section 7 offers five numerical examples. 
The final section is a summary and prospectus. 

2. REGIONS OF CONVERGENCE 

For ordinary power series, it is well known that (i) the domain of convergence is 
bounded by a circle in the complex 4’ plane, (ii) the function u(y) is singular 
somewhere on the convergence-limiting circle, and (iii) the power series coefftcients 
u,, decrease like the terms of a geometric series, that is, 

a,,- (1/6)“A(n) [Geometric Convergence], (2.1) 

where the “exponent of convergence” 6 is equal to the radius of convergence of the 
power series, i.e., is equal to the absolute value of the location of that singularity of 
u(u) which is nearest the origin. A(n) denotes an algebraic (as opposed to exponen- 
tial) function of n which is independent of the location of the convergence-limiting 
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singularity but depends on its type: A(n) is a constant when the singularity is a sim- 
ple pole, a constant divided by n when the singularity is a logarithm, and so on. 

These familiar results have direct parallels for Fourier, Chebyshev, and rational 
Chebyshev series. For Fourier series, the review [S] notes the following: (i) the 
domain of convergence is a strip centered on the real t-axis, (ii) u(t) is singular 
somewhere on one or both of the lines of constant Im(t) bounding the strip, and 
(iii) the coefficients have “geometric convergence” as defined by (2.1) with 

16 I = exp( I Wtsrng)l 1 ( Fourier ), (2.2) 

where t,lng is the location of the convergence-limiting singularity, that is to say, the 
position of the singularity nearest the real t-axis. The contours of constant 
“exponent of convergence” b(fslnp) are simply straight lines parallel to the real axis. 

We can translate these Fourier results to their Chebyshev analogues by analyzing 
the mapping (1.3): .Y = cos(t). We find that the straight lines parallel to the real 
t-axis are mapped into el1ipse.s with foci at x = f 1. It then follows that (i) the 
domain of Chebyshev convergence is bounded by an ellipse, (ii) u(x) is singular 
somewhere on the ellipse of convergence, (iii) the coefficients decrease geometrically 
as in (2.1) with / 6 / being the same for all functions that have convergence-limiting 
singularities on the same ellipse. 

The ellipses of constant 6 are also the contours of constant coordinate ,U for a 
system of elliptical coordinates in the complex x-plane. This is not accidental; the 
curves that bound domains of convergence for many other series are also coor- 
dinate surfaces in the appropriate system. For example, the bounding circles for 
power series are also contours of constant radius in polar coordinates and the 
bounding straight lines for Fourier series are also contours of constant ~3 in Car- 
tesian coordinates. A well-known theorem of complex variable theory assures us 
that the contours of constant real part and the contours of constant imaginary part 
of a function f’( J’) will always be orthogonal. Thus, any mapping t =,~(JJ) that 
transforms a Fourier cosine series into something else--Chebyshev series, TB,,(y), 
or whateverPmwill implicitly create a system of orthogonal coordinates in the y 
plane such that one set of coordinate surfaces will also coincide with surfaces of 
constant 6. 

This is very useful because we can determine the rate of convergence of a series 
merely by expressing the location of the singularities in the appropriate coordinate 
system. For a Chebyshev series, for example, the magnitude of the quasiradial cllip- 
tical coordinate completely determines the exponent of convergence 6 in (2.1). 

The coordinate system that plays the analogous role for the TB,,(JJ) is a rather 
unusual system known as “bipolar” coordinates; Morse and Feshbach [6] give a 
good description. 

THEOREM I. The region qf‘ convergence for a series of the functions TB,,( y) 
def i:ned hJ> 

TB,,(L cot t) = cos(n 1) (2.31 



116 JOHN P. BOYD 

is the exterior of the surfaces of constant ti,( y) in the complex y-plane where ti, is 
one qf the bipolar coordinates (t,, ti,) defined h-y 

t, + it,, = arccot( y/L). (2.4) 

These surfaces are pairs qf circles in the complex y-plane, one above the real y-axis 
and the other below, bchich enclose either y = iL or y = - iL. If these circles are of 
,finite diameter, then the series has “geometric convergence” in the sense of [7] and 
the coej’icients are asymptotically (as n + x): 

a,, h (l/6)” A(n) (2.1) 

w?th 

16 I = exp( I t,, I L (2.5) 

where A(n) is some algebraic (i.e., slowly varying) ,function qf n. The function u(y) 
being expanded is singular only within and on the disks enclosed by the bipolar sur- 
face. 

When the ,function u(y) is singular at y’ = x, then the series converges only on the 
real y-axis and the rate of convergence is “subgeometrtc ” in the sense defined by Boyd 
[7], that is, the best that wte can hope for is 

a,,-exp(-qn’)A(n) [Subgeometric Convergence], (2.6) 

where A(n) is again an algebraic ,function qf n and the “index of exponential con- 
vergence” r is < 1. The TB,,(y) series diverges,for all Im(y) # 0. 

Proof: Starting from the formula [S], 

yI + iyim _ L Cot(t) 

= L[sin(%t,) - i sinh(2t,,)] 

/[cosh(2t,,) - cos(2t,)] 

(2.7) 

one can show via elementary trigonometric identities that the surfaces of constant 
f,, are pairs of circles in the complex y, - y,, plane with centers at 

c = + iL cotanh(2ti,) (2.8) 

and radius 

R = 1 L/sinh(2t,,)l. (2.9) 

Note that as It,,,,] +O, R + co, and c + &ico. In other words, the region of 
divergence bounded by these circles fills more and more of the complex y-plane in 
this limit, squeezing the region of convergence (which is the exterior of these circles) 
closer and closer to the real y-axis until the series converges only on the axis itself. 

Q.E.D. 
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Re (y) 

FIG. 1. Contours of constant t,,, the bipolar coordinate defined by (2.4) in the upper half of the 
complex F-plane for Re(y)E [ ~ 1.5, 1.51, Im( [0, 33. All are circles enclosing the point y= i. The 
centers and radii of the circles are those for map parameterL = I, but the circular shape of the contours 
is the same for all L. The circles in the lower half-plane are not shown because they are merely the 
mirror image of those for Im( J) > 0. These circles are contours of “equiconvergence” as explained in the 
text. 

We omit the high school algebra needed to derive (2.8) and (2.9) because we offer 
Fig. 1 as a graphical proof: it shows the contours of constant t,, in the upper half- 
plane. Figure 2 is a schematic that depicts the regions of convergence for Fourier, 
Chebyshev, and rational Chebyshev functions and the mappings that transform the 
boundaries of one into another. 

TB, (y) T,(x) cos(nt) 

FIG. 2. Schematic illustrating the mappings which transform any of the three basis sets-Fourier 
cosine series, Chebyshev polynomials r,, and rational Chebyshev functions TE,-into one of the others. 
The cross-hatched regions indicate the domain of convergence for each series. 
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It may seem strange that the interior of an ellipse or strip is transformed into the 
exterior of a bipolar coordinate surface. However, the line segment x E [ - 1, 11, 
which lies wholly within the Chebyshev ellipse of convergence, is transformed by 
the map (1.1) into the whole y-axis. The image of the boundary ellipse is therefore 
broken into two curves (which turn out to be circles) separated by the real y-axis. 
The area between the ellipse and the interval [ - 1, 11 is turned inside out to 
become the area between the circles and the y axis. 

Most solutions to differential equations on y E [ - KJ, a] are singular at infinity, 
so subgeometric convergence is usual. This is rather disappointing, but as explained 
in [7] and [9], the alternatives of series of Hermite functions or sine functions 
usually also give subgeometric convergence with r = 4. Expansions on an infinite 
interval are (obviously!) harder than on a finite line segment, and subgeometric 
rather than geometric convergence is the usual price. The simple method of deter- 
mining the asymptotic series coefficients by locating the position of the convergence- 
limiting singularity provides no useful information when that singularity is at 
infinity, so Boyd [2] was forced to use the method of steepest descent. 

Nonetheless, the analysis of the bipolar contours of convergence is important for 
two reasons. First, it is directly applicable to those solutions which are holomorphic 
for all real y including infinity. Second, it illustrates an important advantage of 
TB,,(y) expansions over competing basis sets. Hermite series and sine expansions 
converge exponentially only when the function being expanded decays exponentially 
as 1 ~3 1 + a. However, Theorem 1 shows that we have not merely exponential con- 
vergence but geometric convergence for a function like 

u(y) = l/( 1 +y2). (2.10) 

It follows that series of 7’B,,( y) are extremely effective for solutions which decay 
slowlyPas an algebraic power of y, for example--as 1 y 1 --+ E#. Section 5 will 
amplify this point. 

3. MECHANICS OF COORDINATE CONVERSION 

Since we are solving a problem on an infinite interval in y, it is appropriate to list 
the first few basis functions in Table I and to illustrate them in Fig. 3. However, in 
the author’s experience, the easiest way to solve differential equations is to change 
coordinates to the trigonometric argument y and then apply an ordinary Fourier 
series. 

Since 
y = L cot(t), (3.1) 

where L is the arbitrary, constant map parameter, it follows that 

u,. = I l/CL cot(t)l,l u, (3.2) 

= - {sin’(t)/L} u,. (3.3) 
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b 

012345670 
Y 

F~ti. 3. (a) Plot of the first four basis functions that are symmetric about y=O: T&,(J) [upper J’- 
axis; 7‘R,,= I], TB?(y) [dotted], TB,(y) [dashed], and 7’B,(>,) [solid]. (b) Graph of the lowest four 
antisymmetric functions: TB,(J~) [dot-dash]. rS,(,v) [dotted], TBr(),) [dashed], and TB,(y) [solid]. 
The functions are plotted only for ~2 0 because TB2,,( ---J.) = TB,,,(.I,) and TR2,, j ,( -J) = ~ TB,,< + ,(x) 
for all II. 

By iterating this derivative rule, it is possible to convert differential equations of any 
order from y to 1. Table II gives the conversion formulas for derivatives of up to 
sixth order. 

Examples 

u, + PlYI u =.1’(Y) (3.4a) 

becomes 

sin’(t) u,-Lp[Lcot(t)] 24= -.Lf(Lcot(r)]. (3.4b) 

Similarly, 

u,,,.+p(.Y) u=J‘(!‘) (3Sa) 

becomes 

sin4(t) u,, + 2 cos(t) sin3(t) U, + L’p[y(r)] = L~f(y[r]). (3.5b) 

In the next section, we show that this conversion to trigonometric form is very 
convenient for analyzing the sparsity of the matrices generated by Galerkin’s 
method. Before doing so, however, we should note that it is equally possible to 
leave the differential equation in terms of .P and use the transformation rules of 
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TABLE II 

Transformations of Derivatives for the Mapping y = L cot(r) which Converts a Rational-Chebyshev 
Series in TB,(y) into a Fourier Cosine Series in coax 

u, = [ -sin2(l)/L] u,, 

u,, = [sin2(r)/L2] {sin(t) u,,+ 2 cos(() u,) 

ut,, 

UI U!, u,,, 

8 sin’ - 6 cos sin -sin’ 
-6 [ x sin4(t)/l’] 

24 cos 36 sin 12 cos sin’ sin’ 
-48 cos sin’ -44 sin3 [ x sins/L41 

ui, 

u, Ul, u,,, u4, u5i 

- 384 sin4 400 cos sin’ 140 sin4 ~ 20 cos sin’ -sin4 
+ 480 sin’ ~ 240 cos sin - 120 sin’ 
-120 [ x sin”/LS] 

4, 

u, *I, U!U hi us, %I 

3840 cos sin4 1800 sin 1200 cos sin’ 300 sin3 30 cos sin4 sin5 
- 3840 cos sin’ -6000 sin’ - 1800 cos sin4 - 340 sin5 
+ 12ocos + 4384 sin’ [ x sin’/L6] 

Note. The factor [ x sinq/L”] denotes that all entries in the table must be multiplied by this common 
factor of sin(r) raised to the 4th power, divided by the pth power of the map factor. 

” L is a constant: the “map parameter”. 

Table II, in combination with arccot-inverse mapping, to evaluate TB,(y) and its 
derivatives. For example, (3.3) tells us that 

A TB,/dy = - {sin’[arccot(v/L)]/L}( -n) sin[n arccot(y/l)]. (3.6) 

From a mathematical viewpoint, it is quite irrelevant whether we perform the trans- 
formation from y to t by hand as in (3.5) and then apply Fourier series, or whether 
we use the transformation to evaluate the TB,(y) and all its derivatives using only 
the compiler-supplied routines for trigonometric functions.* To a programmer, 

2 To repeat the warning given earlier, we must add n to the result of the compiler function ACOT( Y) 
for negative J so that t(y) is continuous at y = 0. 
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however, burying the transformation in the subroutines for evaluating the TB,,(,r) 
may be preferable since it allows writing software that shields the user from the 
need to understand the trigonometric transformation. 

4. GALERKIN’S METHOD AND BANDED MATRICES 

The numerical examples in Section 7 were computed using the “collocation” or 
“pseudospectral” method. Its major drawback is that the matrices which are the dis- 
cretization of the differential equation are always full matrices, that is to say, most 
of the matrix elements are nonzero. When the equation has complicated or 
transcendental coefficients, full matrices are unavoidable. However, it is well 
known that when the coefficients of the differential equation are powers of J, 
Galerkin’s method, also known as the “spectral” algorithm, will give matrices with 
banded structure, that is, all but a handful of matrix elements in each row will be 
identically 0. 

The classic Chebyshev example is 

where v is a constant. As discussed in [S, pp. 119-1201, it is possible to manipulate 
the algebraic equations that result from Galerkin’s method into a tridiagonal matrix 
(three nonzero elements in each row). Second-order finite difference also generate a 
tridiagonal matrix, but for a given number of degrees of freedom, the Chebyshev 
solution is much more accurate. 

This trick is extremely useful in semi-implicit time-stepping algorithms, especially 
in fluid mechanics. To avoid a very short time step, the viscous terms must be 
treated implicitly, but this requires solving an equation like (4.1) at roery time step 
where ,f(x) represents advective, pressure, and forcing terms at the previous time 
level. If we had to invert a full matrix at every time step, the semi-implicit algorithm 
would be prohibitively expensive. However, because band matrices can be inverted 
in O(N) operations where N is the number of terms in the Chebyshev series, 
Galerkin solution of (4.1) allows the semi-implicit algorithm to be only slightly 
more expensive-per time step-than a fully explicit procedure. The latter is then 
much more costly per run because it requires a time step an order of magnitude 
smaller than the semi-implicit algorithm. 

The rational Chebyshev functions also share this property of “bandedness,” that 
is, of creating banded matrices when the coefficients of the differential equation are 
powers of 4’. It is easiest to illustrate the idea through a specific example: 

u,:,.+(i-y’)u=O, (4.2) 

where j” is the eigenvalue. The equivalent equation in the trigonometric variable t is 

[sin”(t)/L’] u,, + [2 cos(t) sin5(t)/L2] U, 

+ [A sin’(t) - L” cos2(t)] u = 0. (4.3 1 
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To solve (4.3) via either the spectral or pseudospectral method, we assume 

N 
u z c 0, Wjf) (4.4) 

, = 0 

and substitute this into (4.4). In Galerkin’s method, the matrix representation of the 
differential equation 

Mu =,f; (4.5) 

where M is the differential operator is 

HA=F, (4.6) 

where ,$ is the column vector whose elements are the Fourier coefficients, a,, and 

FL = (cos(kt),,f(t)), (4.7) 

II,, = (cos(kt), A4 cos(,jt)), (4.8 1 

where the inner product is 

(f(f)> g(t)) = [(;.f(r) s(t) dt. (4.9 1 

Since the basis functions are orthogonal under the inner product, it follows that 
the matrix H will be banded if and only if the result of applying the differential 
operator M to cos( jt) can be expressed as a,finite sum of cosines. However, familiar 
identities such as 

cos(u) cos(b) = [cos(a + b) + cos(a - h)]/2, 

sin(u) cos(h) = [sin(u + h) + sin(u - h)]/2. 

(4.10a) 

(4.10b) 

justify the following. 

THEOREM 2. Let cx and /I he nonnegative integers and let /I he even. Then 

1 + 11 

cos’(t)sin”(t)cos(jt)= C b,+,,,cos[(j+m)t], (4.11) 
,,I = (z+Pl 

that is, the product qf cos( jt) with a symmetric trigonometric polynomial of degree 
(a + fi) cun he written us the sum of’ at most 2(x +/I) + 1 terms. Although not 
necrssur~ for our immediate needs, the theorem is also true when cos( jt) is replaced 
by sin( jr). If fl is odd so that the polynomial is antisymmetric about t = 0, then (4.11) 
still applies \r?th the replacement qf cosines by sines on the r.h.s. 

Proof. Omitted because it is a trivial consequence of repeatedly applying (4.10) 
and similar identities. 
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The theorem, although so elementary that it could be easily proved by a high 
school studient, is very powerful. Comparing (4.11) with (4.3), we see that since 
cos(jt) must be multiplied by powers of sin(t) and cos(r) of sixth degree, it follows 
that there can be no more than thirteen nonzero elements in each row of the matrix. 
For this particular equation, the coefficients are symmetric about J = 0 (t = 7r/2), so 
the matrix rows for n even decouple from those for n odd and there are in fact only 
seven nonzero elements in each row or column as follows: 

H,,= 32L'E.- 32L4-2Oj', (4.12a) 

H ,t71,= l?j”f lOj- 16L4- 16L"i., (4.12b) 

H , * 4;, = f si - v, (4.12c) 

H --., , + h,, =.i* + 2i (4.12d) 

where we have divided out a common factor of rr/( 128L*). The identities show that 
elements with negative array indices should be interperted as terms added to the 
element whose row index has the same absolute value, i.e., H 2,, should be added 
to Hz,, and so on. 

For some problems, it is necessary to modify the Galerkin’s matrix by altering a 
couple of rows to impose the boundary conditions. In Section 6 and in the 
numerical examples of Section 7, however, we wili see that for most problems on an 
infinite domain, the boundary conditions are “natural” rather than essential, and 
the Galerkin’s matrix is unaltered. When boundary conditions must be imposed, 
matrix “bordering” techniques [ 111 allow one to still exploit the sparsity of the 
matrix. 

This delightful property of the cotangent transformation was first noted by Cain, 
Ferziger, and Reynolds [lo]: the derivative transformation formulas in Table II 
are, after multiplication by a common factor, trigonometric polynomials. They 
observe quite correctly that this property minimizes aliasing error. However, 
aliasing will be exponentially small for any smooth mapping if N is sufficiently large 
to resolve u()‘). It is probably more significant that the sparsity of the Galerkin’s 
matrix will reduce the cost by an order of magnitude than that it will 
simultaneously make the error a little smaller. 

This illustration, (4.3) was chosen with malice aforethought to be the parabolic 
cylinder equation; the exact eigenfunctions are simply the Hermite functions, which 
are a long-standing competitor to the TLI,,(y) for solving problems on an infinite 
interval. The HermiteeGalerkin equivalent of (4.12) is a diagonal matrix with only 
a single nonzero element in each row or column. When the coefficients of the dif- 
ferential equation are polynomials in y, Hermite expansions also give Galerkin 
matrices which are banded. For example, when (4.3) is generalized by adding in a 
term in y4 to the coefficient of U, the HermiteeGalerkin matrix is pentadiagonal 
with five nonzero elements in each row. The corresponding TB,,( y) matrix has only 
nine elements in each row. We conclude that rational Chebyshev series will give 
banded matrices whenever Hermite functions or other competitors can do the same, 
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but the bandwidth may be either wider or smaller, depending on the differential 
equation. 

For the “Yoshida jet” discussed in Section 7-an inhomogeneous parabolic cylin- 
der equation-there is no contest, however. The Hermite series converges very, very 
slowly while the TB,,(y) expansion converges exponentially fast. The rational 
Chebyshev series is clearly the best method for this problem because it 
simultaneously offers both bandedness and rapid convergence. 

5. SERIES FOR FUNCTIONS WHICH DECAY ALGEBRAICALLY AS 1 y  1 + CC 

Hermite and sine expansions are the main competitors to TB,(y) series for 
solving problems on an infinite interval. As explained in Boyd [7] and Stenger 
[ 123, however, Hermite and sine series converge very poorly when the function 
u(y) decays slowly as / y 1 + ZJ. 3 The coefficients decrease as algebraic functions 
of n when the asymptotic behavior of L(( y) is algebraic decay with 1 yl. In 
contrast, when the function decays exponentially fast for large I y / , so too do the 
coefficients a,, 

As we have already seen in Section 2, however, rational Chebyshev expansions 
are different: it is possible for the TB,( y) series to converge exponentially-perhaps 
even geometrically-for a broad class of functions with slow asymptotic decay 
including some that asymptote to a nonzero constant (no decay!). We have already 
shown that geometric convergence will be the norm when all the singularities of the 
function are confined to a finite portion of the complex y-plane which does not 
include any part of the reul y-axis including co. 

Unfortunately, these conditions are quite restrictive. So simple an example as 

u(y)-J (5.1) 

is excluded because it is singular at co. (Proof: change variable to [ = l/y and 
inspect u(i) at [ =O, which shows that (5.1) has a simple pole at y = a.) For- 
tunately, there is an important class of functions which are weakly singular at co, 
and yet still exhibit suhgeometric exponential convergence. 

THEOREM 3 (Convergence of the Fourier series ,for an algebraically decaying or 
as~~mptotically constant ,function). 

Jf a function u(y) has the inverse power expansion 

u-c~+c,/y+c,/y’+‘~~ (5.2) 

as y + a and a similar series as y + - CO, then the coefficients of its representation 
us a Fourier series in the new coordinate t where y = L cot(t), 

U(Y) = f a, cos(nt)+ 5 b,, sin(nt), (5.3) 

-‘Summability methods can cure this slow convergence for Hermite series as shown by Boyd and 
Moore 1211. 
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will have exponential convergence in the sense that the I a,) and 1 b,, I decrease with n 
faster than any finite inverse power of n. 

We may distinguish two cases. First, if the series (5.2) is convergent and u(y) is 
free from singularities for all real y, then the series (5.3) converges geometrically. 
Second, tf the series (5.2) is asymptotic but divergent, then u(y) is singular at 
infinity, but only weakly in the sense that all derivatives at infinity are bounded. (In 
mathematical jargon, u(y) is C” but not C’” on the real axis.) The coefficients a,, 
decrease at a subgeometric rate and the series in (5.3) is convergent only wlhen J’ is 
real. 

Proof One can prove that the coefficients of a Fourier series decrease at least as 
rapidly as n k by applying k integration-by-parts to the usual integrals that define 
the coefficients as explained in [S]. It is not necessary that u(t) be holomorphic 
everywhere on [0, x]; it is sufficient that (i) the first k derivatives exist and (ii) cer- 
tain boundary conditions, discussed later, are satisfied. If the integration-by-parts 
procedure can be applied an arbitrary number of times, then the convergence is 
exponential. Some references use “infinite order” as a synonym for “exponential” to 
denote that the convergence is faster than n k for any finite power of k. 

The coefficients of (5.2) are the derivatives of u( l/y) evaluated at y = co, so the 
existence of the series implies the boundedness of these derivatives to all orders. To 
apply the integration-by-parts argument to prove the theorem, we need merely 
show that the boundedness of the derivatives with respect to l/y implies the boun- 
dedness of t-derivatives when we make the change of variable y = L cot(t) to con- 
vert (5.3) into a series in cos(nt). However, if we substitute the convergent Laurent 
series for cot(t) into the inverse power series in y, we obtain 

u(t)-dLiO+d,t+dZt’+.... (5.4) 

Since the leading term in cot(t) is l/t, y Ck+“- O(th ’ ‘) for any k. It follows that 
d, is a linear combination of cO, C, ,..., ck. Since these c,, are all bounded, it follows 
that d, will also be finite. This in turn implies that the kth derivative of u(t) at t = 0 
is bounded; the same argument can be applied at the other endpoint, t = 7c, so that 
one can integrate by part k times. Extending this argument to arbitrarily large k 
proves the theorem. Note that we have not proven that the a,, have the asymptotic 
form represented by (2.6) or determined the “exponential index of convergence” r; 
this must be done case-by-case using steepest descent methods [2]. What we have 
shown is simply that coefficients must decrease faster than any finite inverse power 
of k. Q.E.D. 

There is still a subtle problem: even if all the necessary integrals exist, the 
integration-by-parts can be blocked if the boundary terms do not all vanish. It is 
this difXcultyPwhich arises only for algebraically decaying u( y)-which requires a 
general Fourier series in Theorem 3 even though a cosine series is always sufficient 
for functions that decay exponentially as 1 yl + a. When u(y) satisfies certain sym- 
metry properties, it is possible to simplify the general Fourier basis set as described 
by the following. 
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THEOREM 4 (Symmetry relations). (i) If the asymptotic expansion of u(y) as in 
(5.2) contains only) even powers ofy [or lf u( y) decays exponentially fast with ( y I], 
then only> cosine ,functions are needed to expand u( y[t]) as a Fourier series. !f the 
asylmptotic series in l/y contains only odd powxers sf 13, then a Fourier sine expansion 
is necessary and sufficient. 

(ii) Jf the ,function u(J~) is symmetric about y = 0, that is, u(y) = u( -y), then 
only, the even cosines (cos[2nt], n=O, I,...,) and odd sines (sin[(2n+ 1) t], 
n = 0, I,...,) are needed. If z{(y) is antisymmetric ahout the origin, that is, 
u(y) = -u( -y), then all the coefficients in the general Fourier series (5.3) for 
u( ,I’[ t]) will vanish e.ucept ,for those multiplying the odd cosines and the even sines, 
i.e., cos( [2n + I] t) and sin(2nt) ,for n = 0, l,..., in both cases. 

Proaf It is easy to show [S] that all cosines are symmetric about t = 0 and that 
the even cosines are symmetric about r = 71/2 [equivalent to y = O] while the odd 
cosines are antisymmetric about t = 7r/2. Similarly, the sines are all antisymmetric 
about t = 0, but the odd sines are symmetric about I = n/2 while the even sines arc 
antisymmetric about this point. These symmetries are important because one can 
easily prove, directly from the integrals that define the coefficients of a Fourier 
series, that the coefficients must vanish unless the basis function shares the sym- 
metry with u(J.). For example, 

L = (l/x) r” sin(2nt) u(y[t]) dt (5.5) 

is zero for all n if u(y[t]) is symmetric about t = 0 because the integrand is 
antisymmetric about t = 0 (thanks to the sine) so that the portion of the integral for 
r > 0 will automatically cancel that for t < 0. 

The first part can be proved by applying the mapping: even powers of l/y trans- 
late into a power series about t = 0 which also contains only even powers, implying 
that u(y[t]) must be symmetric about t = 0. The second part of the theorem then 
follows immediately by recalling that y = 0 maps into t = 7rnj2. Q.E.D. 

In physics, Theorem 4 would be described as a collection of “parity selection 
rules.” Table III illustrates these rules by giving a simple example of each the four 
classes of functions which satisfy symmetry rules of both types. However, (i) and 
(ii) are completely independent: a function whose asymptotic expansion contains 
only even powers of l/y can be expanded as a cosine series even if it has no definite 
parity with respect to J’= 0. The only consequence of the lack of symmetry about 
the origin is that we must keep all the cosines for such a function. 

Of course, the Fourier expansion is such a powerful tool that it is possible to 
expand a function even in terms of a basis set with a different symmetry. For 
example, 

sin(2t)= -(8/n) f {1/[(2n+3)(2n- 1)]} cos([2n+ l] t). (5.6) 
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TABLE III 

Examples of Functions which Asymptote to a Constant or Decay Algebraically with J 

U(Y) Asymptotic form 

Parity with 
respect to 

?‘=o Code 
Basis 

set 

COS(l) r/(1 +).‘)I z -y/I ?‘I +0(1/y) u(y)= -u(-J) A&E TBh - I ( J’ 1 
cos(2t) (&I)/(JJfl) - I + U( l/j”) u(r) = UC -VI S&E TBzn(?‘) 
sin( 1) l/y1 +?“)’ 2 -l/l?.I+u(lil.L17) u(?.)= UC-?.) .%O S&n + ,(J) 

sin(21) 2J,/( 1 + I.‘) -2/J~+o(l,‘p) U(j.) = -u( -jq A&O SBz,( 1‘ 1 

No/r. These illustrate the four classes of functions that have both symmetry with respect to J = 0 
(denoted by .S for symmetric and A for antisymmetric in the column labeled ‘Code”) and also have 
asymptotic expansions which contain only even or only odd powers of I/J (indicated by E or 0 in the 
“Code” column). The third and fourth columns give the mathematical forms of these symmetries. The 
rightmost column indicates the restricted basis set that is sufficient to represent all u(r) that fall into this 
symmetry class. 

However, in contrast to the exponential convergence predicted by Theorem 3, the 
coefficients decrease as 0( l/n’). One can show that this algebraic convergence with 
n is the usual price for ignoring the symmetry relationships. It is to avoid this, and 
recover exponential convergence, that we should be prepared to use a general 
Fourier series, as opposed to a cosine expansion, for functions which decay slowly 
with J. 

The addition of sines to our trigonometric basis set implies that in terms of the 
original coordinate y (c [-co, cc J), we must augment the TB,,(p) by a second set 
of basis functions that we shall denote SB,,(.V). For the sake of mathematical com- 
pleteness, v.re shall give an explicit expression for these new functions. Since the 
Chebyshev polynomials of the second kind satisfy the identity 

U,,(cos t) = sin[(n + 1) r]/sin(r) 

and since one can easily show that 

sin(t) = L/(L’ +,I”)“~ 

(5.7) 

(5.8) 

from the definition of the mapping, ,v= L cot(t), it follows that the new basis 
functions are 

(5.9a) 

= (1 - X2)‘i2 U,(x) 

= sin( [n + 11 t). 

(5.9b) 

(5.9c) 

The recommended procedure, however, is still to change to the trigonometric 
variable t and then apply Fourier series. 

jXl/6Y!l-Y 
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Christov [13] and Higgins [14] defined rational basis sets which are equivalent 
to the SB,,(y) for even IZ as proved in Boyd [3]. Unfortunately, functions of y 
which are equivalent to the odd sines in t are not included in their expansions, but 
their work and [3] develop general methods for manipulating the basis functions 
directly without using the machinery of the change of variable plus trigonometric 
identities. The latter approach, however, seems easier. 

The class of functions covered by Theorems 3 and 4 considerably broadens the 
applicability of spectra1 methods. However, there are still many classes of functions 
which cannot be efficiently represented by rational Chebyshev expansions because 
the asymptotic expansion for 1 y 1 -+ c;c; either (i) involves fractional powers of y or 
(ii) multiplication by a transcendental function. For example, 

Jo(y) - [2/(7ry)1’~2 c0Q.P X/4), 1I’l-f~ (5.10) 

illustrates both difficulties. Fractional powers can sometimes be eliminated by 
dividing out a common factor or by changing variables. The cosine in (5.10), 
however, shows that the Bessel function has an infinite number of roots on the real 
axis. It is not possible to mimic such behavior in a uniform fashion over the whole 
interval unless the function decays exponentially as ( y/ + a so that the oscillations 
for large y can simply be ignored without the penalty of a large absolute error. 

It follows that it is unreasonable to expect exponential convergence for an exam- 
ple like (5.10) for on)’ series of discrete basis functions on y E [ - m, a]. It is 
possible to obtain a “global” approximation for (5.10) as shown by Boyd [22], but 
only by computing AMY) series, one for the amplitude and one for the phase, in a 
manner that mimics the asymptotic WKB approximation for this function. The 
rS,,(y) are effective for as large a class of functions as is possible for any single 
basis set. 

At the risk of a bit of redundancy, we summarize the theorems and conclusions 
above with the following. 

THEOREM 5 (Expansion in orthogonal rational functions). (A) The TB,,(y) will 
give e.xponentiall~~ rupid convergence ,for all functions u(y) that are free of 
.singuluritic.s ,for real ~3 (except perhaps at x, ) and have one qf the ,following proper- 
ties: 

(i) u(y) decays ,fustev than I/ / y 1’ for arbitrarily large k as I y I -+ cu 
[“e.uponential decq~“] or 

(ii) u(y) bus an asymptotic power series ,for I y I 9 1 that contains only 
EVEN, nonnegative powers qf l/y. 

(B) The SB,,(y) will give exponentially rapid,for all u(y) that are holomorphic 
on the anal.ytic y-axis and either: 

(i) has exponential decay with 1 y / , or 

(ii) u(y) has an usymptotic power series bvith only ODD positive powers qf 
l/J,. 
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(C) The TB,(y) and SB,(y) together give e.uponential convergence when 

(i) u(y) decays exponentiall~v with ) y 1, or 

(ii) has an asymptotic power series that contains only NONNEGATIVE, 
INTEGRAL powers of l/y. 

Both basis sets have the property that the even-numbered basis functions are sym- 
metric about y = 0 while the odd basis functions are antisymmetric, so the basis Set 
can he halved if’ u( y) has definite parity with respect to the origin. 

When u(y) decreases exponentiallAy ,fast as / y -+ ‘;c, the TB,,(y) are always .sufl 
ficient. 

(D) Both basis sets fail (in the sense that their series converge algehraically~ 
rather than exponentiall~v with N) (f u(y) decays as an algebraic (rather than 
e.uponmtial) ,function qf l/i y 1 and lf in addition either: 

(i) the aq’mptotic approximation contains nonintegral powers of y 01 

(ii) the ,function has an infinite number of roots on the real y-a.ui.s. 

6. NATURAL VERSUS ESSENTIAL BOUNDARY CONDITIONS 

Most texts on the finite element method make a careful distinction between 
“essential” boundary conditions, which must be imposed on each individual basis 
function, and “natural” boundary conditions, which do not require modifying the 
expansion functions. When the boundary condition is “natural,” the differential 
equation itself will force the boundary condition to be satisfied by the sum of the 
basis functions, at least approximately, even though this constraint is not explicitly 
imposed on the numerical solution in any way. 

The same distinction also arises when solving differential equations through spec- 
tral or pseudospectral methods. When the differential equation is singular at the 
endpoints of the interval, the usual boundary conditions are that the solution 
should be analytic at the endpoints, and it is not necessary to constrain the basis 
functions. The pseudospectral algorithm will automatically pick out that solution 
which is smooth and analytic. 

Boyd [ 151 gives a good discussion of “natural” boundary conditions in spherical 
geometry. The merging of the coordinate surfaces at the north and south poles 
implies that differential equations in spherical coordinates are always singular at the 
poles; but because these singularities are artifacts of the coordinate system, not the 
physics, the solution is well behaved and holomorphic at the poles. If one expands a 
function of latitude and longtitude as 

u(2, f1) = i F,,,(H) elm; (6.1) 
n,= Y 

one can show that F,,JO) must have an lnll th order root at both poles. The 
spherical harmonics individually satisfy this root condition, which is one reason 
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why they are an obvious and efficient basis set for spherical problems. However, it 
is quite unnecessary to impose these constraints on the basis. Boyd [ 151 shows that 
one can represent the lowest m = 49 spherical harmonic using twenty unconstrained 
cosine functions of the proper symmetry. Although the spherical harmonic has 98 
zeroes (all at the poles) and the trigonometric polynomial approximating it cannot 
have more than 38 roots, the approximation is nonetheless accurate to 8 decimal 
places. For this case, we have not only failed to impose boundary conditions on the 
basis set, but we have used a series truncated so ruthlessly that it cannot possibly 
satisfy all the constraints imposed by the differential equation on the exact solution. 
It does not matter: the blind use of a small number of trigonometric functions still 
gives exceptional accuracy. 

The situation for an infinite interval, y E [ - co, co], is very similar. Indeed, the 
digression into spherical coordinates is quite relevant because problems in 
colatitude 8 may be recast into differential equations on an infinite interval by 
making the change of variable 

tanh y = cos( 0) [Mercator coordinate] (6.2) 

which is popular in cartography. The boundary conditions remain “natural” con- 
ditions even after the shift to the Mercator coordinate. In the next section, we shall 
give some numerical examples of Legendre and associated Legendre functions of 
tanh(y) which were calculated using T/I,,(y) as the basis without any explicit 
imposition of boundary conditions on the numerical solution. Just as on the sphere, 
the singularities of the differential equation force the pseudospectral method to 
choose the correct solution. 

One would like to be able to state this as a theorem: since the coefficients of a dif- 
ferential equation on an unbounded interval are usually singular at infinity, the 
boundary conditions at infinity can always be ignored in setting up the spectral or 
pseudospectral matrix. Unfortunately, this is probably not a universal truth, but 
merely a statement that is true in most practical applications. 

In the first place, we note that although most differential equations are singular 
at infinity, it is easy to contrive examples which are not. For instance, Morse and 
Feshbach [6, p. 5371 showed that 

u,.,. + W(Y- 91 u,. - [IlAY - 4”l 2.4 =fb) 

has the general solution 

(6.3 

u= A exp[l/(y- i)] + Bexp[ - l/(.~- i)] + u,(y), (6.4 ) 

where u,(y) denotes the particular integral. The homogeneous solution will be 
holomorphic and finite for all real y including co. Unless we specifically impose 
boundary conditions at infinity, there is no way to determine the arbitrary con- 
stants A and B. We can add arbitrary multiples of either homogeneous solution to u 
without destroying the analyticity or boundedness of u(y). 
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Equation (6.3) is admittedly artificial, but Stenger [ 121, Boyd [9], Lund and 
Riley [16], and Bowers and Lund [17] have discussed physical examples that 
require “essential” boundary conditions at infinity. These equations are actually 
defined on a,finite interval, and therefore are seemingly irrelevant to the unbounded 
domain which is the theme of this paper, but all have bounded endpoint 
singularities which cause very slow convergence if u(-u) is approximated as an 
ordinary Chebyshev series. The remedy, first proposed by Stenger [ 121, is to use an 
exponential mapping to transform the finite interval to an infinite domain and then 
apply Hermite, sine, or TB,,(y) expansions. One important class of such problems 
are partial differential equations with singularities at the corners of a rectangular 
domain: the boundary conditions on the walls of the domain must still be explicitly 
imposed even after the domain is stretched to infinity. Example Four of Section 7 is 
exceptional in that the boundary conditions are natural because the solution 
vanishes at the singularities. 

The author has not been able to prove or to find in the literature a general 
theorem for differential equations whose coefficients are singular at infinity. Some 
singular differential equations have solutions that cannot be obtained without 
altering the basis set. 

The differential equation for the spherical harmonics is such an example: but only 
on the sphere. One can show that when m is odd, the associated Legendre functions 
have square root singularities at the poles in the variables .Y = cos 0; in other words, 
horh solutions of the differential equation in x are singular at the endpoints. The 
remedy is to define new basis functions 4,, by multiplying each of the old set by this 
square root factor: 

d,,(x) = (1 -.?)’ ? T,,(x) [in X] (6.5a) 

or equivalently in colatitude H, 

t$,,( 0) E sin(d) cos(n0) = + { sin[(n+l)H]+sin[(n-1)81}. (6Sb) 

On J’E [-co, m], however, the transformed versions of the spherical harmonics 
have natural boundary conditions for all m: the mapping seems to greatly weaken 
the singularities. Thus, even this case is not a counterexample on the infinite inter- 
val. 

Of course, if a solution is known to vanish rapidly at infinity, one may impose 
endpoint zeros on the basis functions as an option. In theory, the result is better 
accuracy with a given number of degrees of freedom since the basis is more closely 
matched to the solution. In practice, one must be careful. An exponentially 
decaying function has in effect an infinite order zero at both + co, so one can 
impose zeros of arbitrarily high order on the basis functions. If this is carried to an 
extreme, however, the basis functions will be ill-conditioned because they are 
indistinguishable from one another-all zero to within machine precision-over a 
large portion of y E [ - cc, co]. Boyd [ 15) describes this problem for equations on 
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the sphere. In consequence, this article will discuss only unmodified rational 
Chebyshev functions. 

In the next section, we give five examples (including one solution that decays 
algebraically with y) for which an unconstrained basis set is a success. Because 
boundary conditions at infinity are “natural” in most applications, we usually do 
not have to modify the spectral or pseudospectral matrix by using some rows to 
impose explicit boundary conditions. 

7. NUMERICAL EXAMPLES 

The numerical illustrations have been chosen to reiterate the main points of this 
work. Since one theme is the importance of symmetry, all the solutions are either 
symmetric or antisymmetric with respect to 4’ = 0. All references to N give the num- 
ber of basis functions with the same symmetry as that of the solution; we need not 
include the other basis fuctions because their computed coefficients would be zero. 
To avoid a discussion of time-stepping methods, all five examples are boundary 
value problems in one dimension. To avoid the distractions of the Newton-Kan- 
torovich method [lS], all are linear. 

Although we described Galerkin’s method in Section 4, these sample problems 
were solved using the alternative of the “pseudospectral” or “collocation” method 
[S, 18, 193 because this is simpler to program. The truncated series of TB,(y) is 
substituted into the differential equation. The undetermined series coefficients a, are 
obtained by demanding that the residual be zero at each of N points (“collocation” 
or “grid” points). This converts the boundary value problem into an N x N matrix 
equation which is solved by Gaussian elimination. As explained in [5] and [ 191, 
the pseudospectral method gives accuracy comparable to Galerkin’s if the 
collocation points are chosen to be those of the corresponding Gaussian 
quadrature. In our case, this means the points should be evenly spaced in the 
trigonometric argument t (which implies an uneven grid in y). It is important, 
however, to choose that grid which includes only interior points on t E [0, rr] 
because the differential equation is usually singular at the endpoints. 

When the differential equation is of definite parity [U(J) = u( -y) or u(y) = 
-u( -r)], the basis should be halved to included only those 7’B,(y) of the same 
symmetry as the solution, and the collocation points should be evenly spaced on 
t E [7-r/2, ~1. The collocation conditions on the other half interval will then 
automatically be satisfied because of the symmetry of the differential equation and 
of the functions in the reduced basis set. 

As explained in Section 6, it is sometimes necessary to impose explicit boundary 
conditions at infinity. For most problems on an infinite interval, however, the 
boundary conditions are “natural.” To emphasize this, all the problems were solved 
using an unconstrained series of basis functions. 

When we apply the collocation method to solve a differential equation, there are 
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two sources of error. The “truncation” error is the sum of all the neglected higher 
coefficients of the infinite series for u(v), 

E,(N) = f a,,TB,(y) [truncation error]. (7.1) 
ll=N+I 

In addition, the neglect of the higher coefficients causes the computed coefficients, 
u,,, to differ from those of the infinite series. (Note that we obtain the ti,, not by 
evaluating inner product integrals but rather by solving a truncated matrix 
equation,) This “discretization” error is 

E,>(N) = f (a,, - 47) m,(Y) 
,I = 0 

[discretization error]. (7.2) 

In most of the graphs below, we shall merely consider the sum of these two errors. 
Empirically, experience with problems on finite intervals has shown that the two 
are of roughly the same order of magnitude. For the Yoshida jet, we present a 
graph to show that the same seems to be true for equations on an infinite interval: 
the discretization error and truncation error are roughly equal, so estimates of the 
latter can be simply be doubled (as in [2]) to obtain a crude estimate of the total 
error. 

EXAMPLE 1. 

The exact solution is 

u,.,. -y’u = -exp( -0.5~~‘). (7.3) 

u(y) = exp( -0.5.~‘) (7.4) 

Boyd [2] describes the role of the map parameter L for efficiency and offers sim- 
ple, analytic formulas for estimating the optimum L for certain classes of problems. 
Note that exactly half of the (unevenly spaced) grid points will lie on y E C-L, L] 
and the rest satisfy L 6 1 4’ 1 < GO. Figure 4 illustrates the sensitivity of the numerical 
solution to various L. Even with only four symmetric basis functions, we obtain 
moderate accuracy for all L E [ 1, 51. 

Thus, it is silly to attempt to make heroic efforts to optimize L; any choice that is 
of the same order-of-magnitude as the best L will give good results. When one 
needs to make many calculations for different parameter values, one can estimate L 
through a single set of preliminary runs with fixed N and fixed parameters and 
variable L by inspecting the rate at which the computed series coefficients decrease. 
Although the exact solution is usually not known, one can make a single, expensive 
calculation with high N to compare with the set of runs with small N and varying L 
to obtain a better estimate of Loptlmum. The error varies slowly with L in the vicinity 
of the most efficient L as evident in the flat minima in Fig, 4, so a crude estimate of 
the map parameter is sufficient. 
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0.06 

FIG. 4. The maximum pointwise errors on YE [-CC, CC] for Example 1 [exact solution: 
u = exp( -0.5.?)] for various values of the map parameter L. The truncation included only the lowest 
four symmetric basis functions: (TB,, TBz. TB,, and TB,). 

Figure 5 compares the four-term and live-term collocation solution of (7.3) with 
the exact solution. The accuracy is impressive; the six-term approximation is 
graphed, too, but it is invisible because the difference between it and the exact 
solution is smaller than the thickness of the curves. 

EXAMPLE 2 (North-south current of the steady part of the “Yoshida jet” in 
equatorial oceanography [ 203. ) 

u ,, -y20=y. 

Exact solution: infinite series of Hermite functions given in [21]. 

(7.5) 

Because the solution of (7.3) decays exponentially as 1 y 1 -+ co, Hermite function 
expansions and sine series also converge exponentially fast for Example 1. (The 
Hermite series of a Gaussian is just one term!) The solution to (7.5), however, has 
the asymptotic expansion [ 193, 

u- -(l/y){1 +2/y4+60/yR+~..}, lYl-+~ (7.6) 

which shows that the Yoshida current decays algebraically with 1 y ) for large y. This 
slow decay wrecks the convergence of the Hermite and sine series; the Hermite coef- 
ficients decrease as O(n ~ 3’4)! 

In contrast, the rational Chebyshev expansion converges at a subgeometric but 
exponential rate. As explained in Section 5, the asymptotic series (7.6) indicates that 
a series of the usual TB,,( y) [which are equivalent to cosines of t when we make the 
change of variable y = L cot(r)] converge poorly for the Yoshida flow, but the 
alternative functions SB,(y), which are the images of sin(nt) under the map, give 
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FIG. 5. Comparison of exact and approximate U(J) for Example I (Gaussian solution) with map 
parameter L =4. Exact [solid line], 4 symmetric basis functions [dotted], and 5 symmetric basis 
functions [dashed] are shown. The numerical solution using 6 collocation points is also graphed, but is 
indistinguishable from the exact u(r) to within the thickness of the curve. 

excellent results. Since (7.6) contains only odd powers of l/y, the “parity selection 
rules” of Theorem 4 part (ii), tell us that we need only the even sine funtions, 
sin(2nt), to represent u( y[ t]). 

The results are shown in Fig. 6: the two-term approximation is not bad, and the 
seven-term approximation is graphically indistinguishable from the exact solution. 
The three-term truncation of the large N solution can be summed to give 

u z -J’ (440.8017 + 15.098.~~ + 1.1412.1+/(9 +.r’)’ (7.7) 

-020- 

-0.30 - 

V 

-040 - 

-0.50 - 

-060~ 
0 I 2 3 4 5 

Y 

FIG. 6. Comparison of exact and approximate u(y) for Example 2 (Yoshida jet) with L = 3. The 
exact solution is the solid line, and the approximations with two, three, and four antisymmetric basis 
functions are shown as the dotted, long-dashed, and short-dashed curves, respectively. 
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which has a maximum absolute error of only 0.006 on y E [ - co, a]. Hermite 
functions are the “obvious” way to solve (7.5) since they are the eigenfunctions of 
the differential operator; the coefficients of the infinite Hermite series can be 
evaluated in closed form. Because the Hermite expansion converges so poorly, 
however, (7.7) is a much more useful analytic approximation than any truncated 
sum of Hermite functions. 

We emphasize that (7.7) is the truncation of the exact TB,(y) series to 3 terms; it 
lacks the additional discretization error of the pseudospectral solution computed 
with three collocation points. Figure 7 compares the N = 1 (two-term) truncation of 
the infinite series for v (as calculated using large N) with the results of the 
pseudospectral method using two collocation points. Table IV shows how the 
pseudospectral coefficients converge to those of the exact u(y) as N increases. 

EXAMPLE 3 (Legendre’s differential equation transformed from XE [ - 1, 1 ] to 
J’ E [ - KI, ml.) Letting P,,(X) denote the usual Legendre polynomial, 

u,., + [n(n+l)sech*(p)+ l]u=P,,(tanh[y]). (7.8) 

Exact solution: P,,( tanh [ y] ). 
As noted in Section 6, “natural” boundary conditions are the norm on the sphere; 

the same is true when Legendre’s equation, with singularities at X= + 1, is transfor- 
med to an unbounded interval by setting y = tanh-‘(X). Figure 8 illustrates the 
result for P,, (tanhE?>]). Because this solution has a dozen roots and thus more 
structure than the first two examples, more terms are needed: even the sixteen-term 
approximation is rather crude. However, the graph for N = 20 is indistinguishable 
from the exact solution. 

FIG. 7. The exact solution for the Yoshida jet [solid] is compared with the approximation obtained 
via collocation with two (positive) interpolation points [dotted] and also with the result of truncating 
the infinite series for u(p) to just two terms [dashed]. The truncated approximation is more accurate 
because it lacks the “discretization error” of what we obtain by inverting the 2 x 2 pseudospectral matrix. 
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TABLE IV 

The Coetlicients of the Spectral Series for the Yoshida Jet u(y) as Computed Using Various Numbers of 
Collocation Points 

n 

1 
3 
5 
7 
9 

II 
13 
15 

2 pts. 

~ 0.41769 
0.199475 

3 pts. 

-0.388976 
0.179639 

- 0.050409 

4 pts. 

- 0.394428 
0.176129 

-0.04471 
0.001399 

I pts. 

-0.395329 
0.179237 

-0.051163 
0.002620 
0.003856 

-0.000541 
-0.000452 

21 pts 

-0.395324 
0.119224 

-0.051147 
0.00265 1 
0.003740 

- 0.000592 
- 0.000446 

0.000060 

This is quite typical of spectral solutions: the error is large for all truncations up 
to some limit N that depends on the equation, and then plunges abruptly. 
Figures 3.7 and 3.8 of [S] give good illustrations of this. It is only after the series 
has begun to converge, that is, only after the error has begun its abrupt drop, that 
the asymptotic definitions we gave earlier-“exponential” versus “algebraic” con- 
vergence, “geometric” versus “subgeometric”-have any meaning. However, as 
stressed in [S] and [ 191, even if only a moderate error of say 5 % is needed, 
pseudospectral methods still are much more efficient than finite difference techni- 

Y 

FIG. 8. Exact solution (solid) compared with the sixteen-term approximation (dotted) to Example 3: 
P,,[tanh[.r)]. Because this mapped Legendre polynomial is symmetric about y = 0, only the functions 
TB,,(y), n = 0, l,..., 15 were used in the approximation, and the sixteen collocation points were all at 
positive 4’. The approximation with twenty collocation points is graphically indistinguishable from the 
exact solution. 
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ques. It is quite absurd to suppose that a three grid point approximation to the 
Yoshida jet would yield the error of only 2.5% achieved by the three-point 
pseudospectral method, or that it would easily generate an analytic approximation 
like (7.7). 

EXAMPLE 4 (Removal of endpoint singularities via mapping). 

u,.,. + 2 sech*(y) u = sech(y). (7.9) 

Exact solution. 

u(y) = sech(y) = [l - tanh’(y)]“* = Pt(tanh[y]). (7.10) 

Equation (7.9) is merely a particular case of the differential equation satisfied by 
the associated Legendre functions P;(X) after the transformation X= tanh(y) has 
been applied. What is special about this example is that 

P;(X)=(l -X2)“2 (7.11) 

so that the solution is singular at the endpoints of the original integration interval 
in X. If we expand (7.11) as a series of Chebyshev polynomials in X, we find 

(1 -X’)““=(2/71) l-2 f [1/(4n*- 1)] T,,(X) (7.12) 
II = 1 

The singularity spoils the convergence of the series so that the coefficients decrease 
as 0( l/n’): algebraic convergence. 

Stenger [ 121 pointed out that the map X= tanh(y) would heal the singularity: 
the transformed square root function is sech(y), which decays exponentially fast, 
and can therefore be efficiently expanded in any of several basis sets. Stenger himself 
used sine functions, but Boyd [9] points out that the tanh-mapping is the key, not 
the choice of basis set. Table V shows that the TB,(y) series also has coefficients a,, 
in 

(1 - X2)‘12 = f azn TB,,(arctanh[X]) 
II = 0 

(7.13) 

that decrease exponentially with n; u2” - O[exp( -qn”*)] for some q as shown in 
Boyd [2]. 

More important, this example shows that the mapping also generates a differen- 
tial equation with smooth coefficients. The derivatives of Pi with respect to X are 
not even bounded at the endpoints; the term-by-term derivative of the series in 
(7.12) is divergent. However, all the derivatives with respect to y of Pf (tanh[ y]) 
tend to 0 as 1 yl + a3 so that one can prove that the 7X,(y) series for the 
derivatives converge exponentially fast with n. 

Of course, this example is contrived: the proper way to deal with the square root 
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TABLE V 

The Coefficients for Two Representations of the Function ,f(X) = (1 - X2)’ z 

n an h” 

0 0.324659 
2 - 0.410943 
4 0.168566 
6 -0.026329 
8 0.0069 14 

10 -0.002437 
12 -0.000119 

14 - 0.000300 
16 - 0.000046 
18 - o.ooOOO9 
20 0.0ooo15 

22 o.oooo 15 

24 0.0ooo11 

26 0.000007 
28 o.OcOoo4 
30 0.000002 

0.6366 
- 0.4244 
- 0.0849 
~ 0.0364 
- 0.0202 
-0.0129 
- 0.0089 
- 0.0065 
- 0.0050 
- 0.0039 
- 0.0032 
- 0.0026 
- 0.0022 
~0.0019 
~0.0016 
-0.0014 

Nore. The (I, are the coefficients of the series in TB,(arctanh[X]) as computed by applying the 
pseudospectral method with 16 points to the difTerentia1 equation. The h, are the known exact coef- 
ficients of the expansion in T,,(X). The maximum pointwise error in the Chebyshev expansion is 
approximately l/(nN), which is roughly l/SO to the order shown; the error in the rational Chebyshev 
approximation is about l/300,000. 

singularity of the associated Legendre functions for all odd zonal wavenumbers m is 
to multiply each basis function by the square root. For more complicated 
singularities, however, it may be impossible to multiply or divide out the branch 
point. Stenger’s mapping of the finite interval to an infinite interval is then a real 
godsend (see [16] and [17]). 

The classic textbook example is 

v2u= -1; u = 0 on all sides of the unit square 

which has weak logarithmic singularities at the corners [ 1 l] even though the 
equation is both linear and constant coefficient. 

EXAMPLE 5. 

u?.,,.,.,. + 1624 = 16 sech(2y). (7.14) 

This example shows that boundary conditions at infinity can be “natural” rather 
than “essential” even for afourth order differential equation. As shown in Fig. 9, the 
TB,(y) series still gives very high accuracy with a modest number of terms. 
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FIG. 9. Exact solution (solid) compared with the four-collocation-point (dotted) and seven-point 
(dashed) approximations for Example 5: fourth-order differential equation (I, = 1). 

8. SUMMARY AND CONCLUSIONS 

Expansions in orthogonal rational functions have many virtues. As shown by 
Table II and Section 3, it is easy to evaluate their derivatives (to solve differential 
equations) merely by taking linear combinations of the derivatives of cos(nt). 
When, as is usually the case (Sect. 6) the boundary conditions are “natural” rather 
than “essential,” it is easier to apply the pseudospectral method with these functions 
than with Chebyshev polynomials because it is unnecessary to use rows of the 
matrix to explicitly impose the boundary conditions. Galerkin’s method is 
sometimes a very efficient alternative to the pseudospectral method for the diffusive 
part of a “splitting” or “fractional” steps time integration because the orthogonal 
rational functions yield a banded Galerkin matrix whenever the differential 
equation has polynomial or rational coefftcients (Sect. 4). Most of these new con- 
cepts carry over, with slight modifications, to equations on a semi-infinite interval, 
but a full discussion is deferred to a later publication [22]. 

The basis set we have discussed here is so powerful that it will give an 
approximation whose error decreases as an exponential function of the truncation 
N for three broad classes of functions-with some additional tricks for the last two. 
The first class is that of functions which (i) have no singularities for real y except 
perhaps at m and (ii) decay exponentially fast with I y ( as I y ) -+ cx) along the real 
axis. The rational functions we defined as TB,,(y) always give exponentially fast 
convergence for such functions. 

The second class is composed of u( y ) which lack exponential decay with I y I, but 
which have asymptotic power series in l/y for ( y/ 9 1. As discussed in Section 5, 
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there is always some set of orthogonal rational functions that will work. However, 
it may be necessary to augment the TB,(y), which are the images of cos(nt) under 
the map y = L cot(t), by additional rational functions, defined by (5.9) and denoted 
SB,(JJ), which are the images of sin(nt) under the same map. In other words, after 
transforming the problem from YE [ - CZ, a] to TV [0, n], it may be necessary to 
use a general Fourier series in t instead of the cosine series that is sufficient for U(J) 
that decay exponentially fast with j ~1. Table III and Theorem 5 summarize the 
cases. 

The third class of functions is one seemingly irrelevant: solutions on a$&e inter- 
val with bounded singularities at the endpoints. The trick is to use a hyperbolic 
tangent mapping to stretch the domain to the whole y-axis and then apply the 
rational Chebyshev functions. In terms of the original coordinate, one is using 
TB,,(arctanh[X]) as a basis on XE [ - 1, 11. 

Though it is a bit confusing to discuss so many different cases, this is a very 
welcome confusion because it shows that the TB,,(l,) series can be combined with 
other devices and mappings. In this article, we have tried to provide a good 
theoretical and empirical foundation and suggest the possibilities of orthogonal 
rational functions. 
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